Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
Tags
- Text mining
- Default X points
- matplotlib
- self parameter
- Else
- line width
- For loops
- break
- iterates
- error
- continue
- PANDAS
- PROJECT
- __init__
- data distribution
- AS
- pie charts
- MySQL
- Text Analytics
- variables
- train/test
- line color
- machine learning
- Github
- polynomial regression
- Python
- matplotlib.pyplot
- multiple lines
- SQL
- start exercise
Archives
- Today
- Total
Data Science Explorer
Machine Learning : Standard Deviation 본문
반응형
- Standard Deviation
It is a number that describes how spread out the values are.
A low standard deviation means that most of the numbers are close to the mean(average).
A high standard deviation means that values are spread out over a wider range.
You can use std() to get a standard deviation value.
Example
import numpy
speed = [11, 20, 582, 12]
x = numpy.std(speed)
print(x)
245.83162428784462
- Variance
It is another number that indicates how spread out the values are. If you take the square root of the variance, you can get the std. You can use var() method to find the variance.
Example
import numpy
speed = [10, 15, 82, 99, 56]
x = numpy.var(speed)
print(x)
1251.44
'Machine Learning' 카테고리의 다른 글
Machine Learning: Linear Regression (0) | 2023.11.15 |
---|---|
Machine Learning: Percentiles (0) | 2023.11.14 |
Mean Median Mode (0) | 2023.11.12 |
Text Mining #4 Stemming and Lemmatization (0) | 2023.09.06 |
Text Mining #3 Removing Stop Word (0) | 2023.09.05 |