Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- Github
- continue
- error
- Else
- multiple lines
- matplotlib.pyplot
- break
- polynomial regression
- AS
- Text mining
- machine learning
- iterates
- start exercise
- Text Analytics
- matplotlib
- Default X points
- PANDAS
- line width
- variables
- line color
- __init__
- pie charts
- self parameter
- SQL
- MySQL
- train/test
- Python
- PROJECT
- For loops
- data distribution
Archives
- Today
- Total
목록train/test (1)
Data Science Explorer

To measure if the model is good or not, we can use a method called Train/Test. Train/Test It is for measuring the accuracy of the model, and it is called train/test because you separate the data set into two: training and testing set. Train the modeal means create the model and test the model means that the accuracy of the model. 80 % for training and 20 % for testing. Example Our data set illus..
Machine Learning
2023. 11. 18. 22:10